
 

 

2.3.3 Verification of the learned model 

Practical guidance – cross-domain 

Authors: Rob Ashmore (Dstl), and Dr Radu Calinescu and Dr Colin Paterson (Assuring 
Autonomy International Programme) 

The Model Verification stage of the ML lifecycle is concerned with the provision of auditable 
evidence that a model will continue to satisfy its requirements when exposed to inputs 
which are not present in the training data. 

Stage Input and Output Artefacts 

The key input artefact to this stage is the trained model produced by the Model Learning 
stage. The key output artefacts are a verified model, and a verification result that provides 
sufficient information to allow potential users to determine if the model is suitable for the 
intended application(s). 

Activities 

1. Requirement Encoding - This activity involves transforming requirements into both 
tests and mathematical properties, where the latter can be verified using formal 
techniques. Requirements encoding requires a knowledge of the application domain, 
such that the intent which is implicit in the requirements may be encoded as explicit 
tests and properties. A knowledge of the technology which underpins the model is 
also required, such that technology-specific issues (such as overfitting or adversarial 
vulnerabilities) may be assessed through the creation of appropriate tests and 
properties. 

2. Test-Based Verification - This activity involves providing test cases (i.e. specially-
formed inputs or sequences of inputs) to the trained model and checking the 
outputs against predefined expected results. A large part of this activity involves an 
independent examination of properties considered during the Model Learning stage 
(guidance on model learning is provided in section 2.3.2), especially the Performant 
and Robust properties. In addition, this activity also considers test completeness, i.e. 
whether the set of tests exercised the model and covered its input domain 
sufficiently. The latter objective is directly related to the Complete property from the 
Data Management stage (guidance on data management is provided in section 
2.3.1). 

3. Formal Verification - This activity involves the use of mathematical techniques to 
provide irrefutable evidence that the model satisfies formally-specified properties 
derived from its requirements. Counterexamples are typically provided for 
properties that are violated, and can be used to inform further iterations of activities 
from the Data Management and Model Learning stages. 

Desired Assurance Properties 

In order to be compelling, the verification results (i.e. the evidence) generated by the Model 
Verification stage should exhibit the following key properties: 
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1. Comprehensive - This property is concerned with the ability of Model Verification to 
cover: 

a. all the requirements and operating conditions associated with the intended 
use of the model 

b. all the desired assurance properties from the previous stages of the ML 
lifecycle (e.g., the completeness of the training data, and the robustness of 
the model). 

2. Contextually relevant - This property considers the extent to which test cases and 
formally verified properties can be mapped to contextually meaningful aspects of 
the system that will use the model. For example, for a model used in an autonomous 
car, robustness with respect to image contrast is less meaningful than robustness to 
variation in weather conditions. 

3. Comprehensible - This property considers the extent to which verification results 
can be understood by those using them in activities ranging from data preparation 
and model development to system development and regulatory approval. A clear 
link should exist between the aim of the Model Verification and the guarantees it 
provides. Limitations and assumptions should be clearly identified, and results that 
show requirement violations should convey sufficient information to allow the 
underlying cause(s) for the violations to be fixed. 

Methods 

Table 1 provides a summary of the methods that can be applied during each Model 
Verification activity in order to achieve the desired assurance properties (desiderata). 
Further details on the methods listed in Table 1, along with the references to the documents 
cited in the table are available in [1]. 
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Table 1 – Assurance methods for the Model Verification 

Summary of Approach 

1. Take the model to be verified produced by the Model Learning stage (guidance on 
model learning is provided in section 2.3.2). 

2. Apply appropriate methods in order to undertake each model verification activity to 
demonstrate the machine-learnt model is suitable for its intended use. 

a. Apply appropriate methods for requirement encoding 
b. Apply appropriate methods for verification by adopting either a test-based or 

formal approach 
3. Provide a verification result that provides sufficient information to allow potential 

users to determine if the model is suitable for its intended application. 
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