ASSURING
AUTONOMY

INTERNATIONAL PROGRAMME

2.3.3 Verification of the learned model
Practical guidance - cross-domain

Authors: Rob Ashmore (Dstl), and Dr Radu Calinescu and Dr Colin Paterson (Assuring
Autonomy International Programme)

The Model Verification stage of the ML lifecycle is concerned with the provision of auditable
evidence that a model will continue to satisfy its requirements when exposed to inputs
which are not present in the training data.

Stage Input and Output Artefacts

The key input artefact to this stage is the trained model produced by the Model Learning
stage. The key output artefacts are a verified model, and a verification result that provides
sufficient information to allow potential users to determine if the model is suitable for the
intended application(s).

Activities

1. Requirement Encoding - This activity involves transforming requirements into both
tests and mathematical properties, where the latter can be verified using formal
techniques. Requirements encoding requires a knowledge of the application domain,
such that the intent which is implicit in the requirements may be encoded as explicit
tests and properties. A knowledge of the technology which underpins the model is
also required, such that technology-specific issues (such as overfitting or adversarial
vulnerabilities) may be assessed through the creation of appropriate tests and
properties.

2. Test-Based Verification - This activity involves providing test cases (i.e. specially-
formed inputs or sequences of inputs) to the trained model and checking the
outputs against predefined expected results. A large part of this activity involves an
independent examination of properties considered during the Model Learning stage
(guidance on model learning is provided in section 2.3.2), especially the Performant
and Robust properties. In addition, this activity also considers test completeness, i.e.
whether the set of tests exercised the model and covered its input domain
sufficiently. The latter objective is directly related to the Complete property from the
Data Management stage (guidance on data management is provided in section
2.3.1).

3. Formal Verification - This activity involves the use of mathematical techniques to
provide irrefutable evidence that the model satisfies formally-specified properties
derived from its requirements. Counterexamples are typically provided for
properties that are violated, and can be used to inform further iterations of activities
from the Data Management and Model Learning stages.

Desired Assurance Properties

In order to be compelling, the verification results (i.e. the evidence) generated by the Model
Verification stage should exhibit the following key properties:

1. Comprehensive - This property is concerned with the ability of Model Verification to
cover:

a. all the requirements and operating conditions associated with the intended
use of the model

b. all the desired assurance properties from the previous stages of the ML
lifecycle (e.g., the completeness of the training data, and the robustness of
the model).

2. Contextually relevant - This property considers the extent to which test cases and
formally verified properties can be mapped to contextually meaningful aspects of
the system that will use the model. For example, for a model used in an autonomous
car, robustness with respect to image contrast is less meaningful than robustness to
variation in weather conditions.

3. Comprehensible - This property considers the extent to which verification results
can be understood by those using them in activities ranging from data preparation
and model development to system development and regulatory approval. A clear
link should exist between the aim of the Model Verification and the guarantees it
provides. Limitations and assumptions should be clearly identified, and results that
show requirement violations should convey sufficient information to allow the
underlying cause(s) for the violations to be fixed.

Methods

Table 1 provides a summary of the methods that can be applied during each Model
Verification activity in order to achieve the desired assurance properties (desiderata).
Further details on the methods listed in Table 1, along with the references to the documents
cited in the table are available in [1].

Body of Knowledge 2.3.3 — cross-domain practical guidance
Copyright © 2019 University of York

Associated activities' Supported desiderata®

Requirement Test-Based Formal Compre- Contextually Compre-

Methaod Encoding Verification Verification hensive Relevant hensible

Independent derivation of test cases v
Mormal and robustness tests [2] ’
Measure data coverage

Measure model coverage [3. 4. 5]

Guided fuzzing [6]

Combinatorial Testing [7]

SMT solvers [8]

Abstract Interpretation [2]

Generate tests via simulation

Verifier of Random Forests [10]

Verification of ML Libraries [11]

Check for unwanted bias [12]

Use synthetic test data [13] v
Use GAN to inform test generation [14]
Incorporate system level semantics [15] v
Counterexample-guided data

augmentation [16]

Probabilistic verification [17] v

' &

i

LR R

A
Th
e

T SSss
Ry RY
T T R Y
* % % %
43

Use confidence levels [15] v / *
L

Evaluate interpretability [15]

[* *

T’ = activity that the method is typically used in; 4 = activity that may use the method
f% = desideratum supported by the method: & = desideratum partly supported by the method

Table 1 — Assurance methods for the Model Verification

Summary of Approach

1. Take the model to be verified produced by the Model Learning stage (guidance on
model learning is provided in section 2.3.2).

2. Apply appropriate methods in order to undertake each model verification activity to
demonstrate the machine-learnt model is suitable for its intended use.

a. Apply appropriate methods for requirement encoding
b. Apply appropriate methods for verification by adopting either a test-based or
formal approach

3. Provide a verification result that provides sufficient information to allow potential
users to determine if the model is suitable for its intended application.

References

e [1] Ashmore, R., Calinescu, R. and Paterson, C., 2019. Assuring the Machine Learning
Lifecycle: Desiderata, Methods, and Challenges. arXiv preprint arXiv:1905.04223.

e [2] RTCA. 2011. Software Considerations in Airborne Systems and Equipment
Certification. Technical Report DO-178C.

e [3] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, et al. 2018. DeepGauge: multi-granularity
testing criteria for deep learning systems. In 33rd ACM/IEEE Int. Conf. on Automated
Software Engineering. ACM, 120-131.

e [4] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore:

Automated whitebox testing of deep learning systems. In 26th Symp. on Operating
Systems Principles. ACM, 1-18.

Body of Knowledge 2.3.3 — cross-domain practical guidance
Copyright © 2019 University of York

[5] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. 2018. Concolic testing for deep neural networks. In 33rd ACM/IEEE
Int. Conf. on Automated Software Engineering. ACM, 109-119.

[6] Augustus Odena and lan Goodfellow. 2018. Tensorfuzz: Debugging neural
networks with coverage-guided fuzzing. (2018). arXiv:1807.10875

[7] Lei Ma, Felix Juefei-Xu, Minhui Xue, et al. 2019. DeepCT: Tomographic
combinatorial testing for deep learning systems. In 26th Int. Conf. on Software
Analysis, Evolution and Reengineering. IEEE, 614—-618.

[8] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety
verification of deep neural networks. In Int. Conf. on Computer Aided Verification.
Springer, 3-29.

[9] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, et al. 2018. Al2: Safety
and robustness certification of neural networks with abstract interpretation. In IEEE
Symp. on Security and Privacy (SP). IEEE, 3—18.

[10] John Tornblom and Simin Nadjm-Tehrani. 2018. Formal verification of random
forests in safety-critical applications. In Int. Workshop on Formal Techniques for
Safety-Critical Systems. Springer, 55—71.

[11] Daniel Selsam, Percy Liang, and David L Dill. 2017. Developing bug-free machine
learning systems with formal mathematics. In 34th Int. Conf. on Machine Learning-
Volume 70. JMLR. org, 3047—-3056.

[12] Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, et al. 2018. Al
fairness 360: An extensible toolkit for detecting, understanding, and mitigating
unwanted algorithmic bias. (2018). arXiv:1810.01943

[13] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest:
Automated testing of deep-neural-networkdriven autonomous cars. In 40th Int.
Conf. on software engineering. ACM, 303-314.

[14] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. Deeproad: GAN-based metamorphic autonomous driving system testing.
(2018). arXiv:1802.02295

[15] Tommaso Dreossi, Somesh Jha, and Sanjit A Seshia. 2018. Semantic adversarial
deep learning. (2018). arXiv:1804.07045

[16] Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Kurt Keutzer, Alberto
Sangiovanni-Vincentelli, and Sanjit A Seshia. 2018. Counterexample-guided data
augmentation. (2018). arXiv:1805.06962

[17] Perry Van Wesel and Alwyn E Goodloe. 2017. Challenges in the verification of
reinforcement learning algorithms. (2017).

[18] Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of
interpretable machine learning. (2017). arXiv:1702.08608

Body of Knowledge 2.3.3 — cross-domain practical guidance
Copyright © 2019 University of York

